Jump to content

  •  

* * * * *

A review of the Unistellar EVscope


Discuss this article in our forums

A review of the Unistellar EVscope

 

Well here is another product that has received a lot of hype and press, but without divulging much useful information about the telescope itself. Well needless to say, the hype worked on me….and I took delivery of my (used) Unistellar EVscope today.

 

Why did I buy, and why should you?

 

I’ve been in the hobby since I was 13 years old. Over the years I’ve had everything from homebuilt 6F8 newts, to 11” SCTs to Questars and Televues, and you know what? - M13 and all the rest look exactly the same today as they did 40 years ago - so something had to change. I thought about getting into astrophotography as a way of perhaps looking at this differently, but there is a considerable investment in equipment, a steep learning curve, and generally you need to be attendant at your telescope when imaging.

 

So the EVscope checked several boxes for me.

·         GOTO – check

·         Self-aligning – check

·         Portable – check

·         Astrophotography for idiots – check (albeit on a limited basis)

·         Ability for scope to operate remotely (ie: me indoors) - check

 

So what follows is a brief description, first impressions and first-light performance.

 

What is it?

 

A close up of a logo

Description automatically generated with medium confidenceThe EVscope is essentially a Newtonian based camera in as much as the parabolic 4.5” F4 primary mirror focuses its image directly onto a Sony IMX224 sensor located in the position that would normally be occupied by the diagonal in a Newtonian or secondary in a Cassegrain.

 

The Sony IMX224 is a color sensor with a resolution of 1.2 Million pixels (1305 x 977).

 

 

 

The OTA is carried on a single fork arm ALT-AZ Goto mount with an integral lithium ion battery supposedly good for up to 10 hours. Also packed in there is a lot of computing power as evidenced by the scope’s ability to;

 

1.      Recognize any star field you point it at and derive its internal map from that. (Plate solving)

2.      Offer full GOTO and tracking capability.

3.      View in both live view (no enhancement) or enhanced vision (EV) which takes frames every 4 seconds and stacks them internally in real time to provide an enhanced vision rendering of the target.

4.      Cancel out field rotation that you get with any non-equatorial mounted telescope.

5.      Sets up its own wireless network so it can access your phone or tablet to:

a.      Get current GPS coordinates and time

b.      Send real time pictures to your device (and 8 others)

c.       Your phone or tablet runs the Unistellar app which is a free download from Google Play or the Apple store.

 

 

The eyepiece is not really an eyepiece in the sense that we’re all familiar with, but a ‘window’ looking at a Hi-res OLED display. You see on this display (and on your phone or tablet) whatever the main Sony chip sees. The sensor image is roughly the equivalent of 50X optical magnification. There is no facility to be able to change magnifications, although can zoom digitally on your device.

 

However, it is the EV mode that makes this scope different. While it is true that astrophotography has been around for decades, and no one thing that the EVscope does is groundbreaking – the EVscope accomplishes this without all the gear, wires, setup and steep learning curve necessary to get results with a more traditional setup.

 

It is this ability to capture and stack 15 images per minute with the commensurate increase in brightness and detail of the target that allows the EVscope to make some of its extravagant claims. I have an 8” SCT (which mathematically has 3X the light gathering power) and I can tell you that, with the possible exception of M42, the lowly 4.5” mirror on the EVscope reveals a lot more detail, brightness and color of the Messier and NGC objects when in EV mode – the magic of light stacking vs. raw aperture.

 

Open box

 

The EVscope arrived packed in the usual double cardboard box. Well protected. Once you get the outer wrapper off, you will be met with the following promise.

A picture containing indoor

Description automatically generatedText, letter

Description automatically generated

Opening the inner box reveals the following

a)                   EVscope in parked position

b)      Tripod

c)                   Accessory box for the AC adapter

d)      Quick start manual and user manual

 

 

 

 

 

First impressions.

 

The scope and tripod together weigh approx. 20lbs. I wondered what the EVscope would be made of. The answer is aluminum for the OTA tube and plastic cladding for the lower end cell and mount cladding. The fork arm/base /rear cell have aluminum skeletons but in truth is, I was a bit disappointed.

 

With this scope commanding almost $3000USD, you’d like to think you could get away from the ETX black plastic syndrome, but the scope does have some heft to it, hinting perhaps at a substantial aluminum frame beneath the cladding.

 

The tripod is basically a heavy-duty camera tripod and the feet are tipped with squishy rubber pads which seem to allow a lot of ‘wiggle’.

 

Several times I would get the message that the ‘EV mode was dropped due to vibration’. It was a breezy night. I wonder if the squishy feet were allowing too much movement?

 

The tripod design allows the angle of the legs to be altered from a narrow footprint to almost horizontal in 3 steps. There are 3 ledges that the leg stop can butt against. Just pull out the detent to allow the stop to clear the lower ledge and butt against the next. It is not spring loaded so be sure to re-seat it.

 

The interface between the mount base and tripod head could also be more rigid. There are only 2 hold-down screws around the periphery, and this allows some movement between the scope and the tripod head. 3 screws would eliminate this issue, and indeed, there is a raised boss in the casting identical to the other two locations that has not been drilled/tapped. This would be an easily fixed oversight.

 

There is also some unwanted lateral play in the AZ axis. This could be contributing to the vibration warnings I sometimes get.  I am currently working with Unistellar to address this issue and will advise the outcome.

 

A picture containing weapon

Description automatically generatedLooking down the tube you will see the primary mirror at the bottom, and the ‘secondary cage’ forming the cross at the top of the tube where the Sony sensor is mounted.

 

Interestingly, the tube is double walled.. Whether this is to help with thermal stability, or to hide the wiring going up to the sensor – who knows? The inside of the OTA is painted a satin black which does a poor job of reducing stray light. A flat black paint, or even better, a textured flat black would help the cause.

 

 

The overall length of the OTA is a bit longer than a 4.5”F4 system would normally dictate. This is because the secondary light reflections that occur in a Newtonian or Cassegrain design that eat up some focal length are missing in the EVscope. It’s straight from the mirror to the sensor with nothing in between, so the OTA is as long as the mirror focal length plus whatever is needed at either end to house the optics and sensor.

 

 

A picture containing text

Description automatically generatedUnderneath the mount arm, there are two ports. The small one (USB-C) is the charging port. The large one (USB-A) can be used for powering a phone or other USB device from the scope’s internal battery.

 

 

 

 

 

 

 

Setting up.

 

The Unistellar documentation is not, well….stellar. It’s bare bones and basically covers taking the scope out of the box and setting it up and how to start the app. Then you’re pretty well on your own.

 

Spread the tripod and level with the integral bubble level. Plunk the mount/scope into the socket and secure with the two thumbscrews, take off the dust caps and the physical stuff is done. Maybe a minute - tops.

 

Press the power button about 2 seconds and it will initially turn Purple, and then to Red as it finishes its boot sequence and establishes its Wi-Fi network. At this point you can acquire the EVscope network on your phone or tablet, and then start the Unistellar app on that same device.

 

A picture containing text, electronics

Description automatically generatedUse the app joystick to depress the scope to point at any open area of sky with visible stars.

 

A note on the joystick. The center yellow circle is the ‘tip’ of the joystick. Drag it onto any of the four direction arrows to move the scope. The further from the center you drag it, the faster the EVscope moves. Fine adjustments can be made by tapping just the arrows. I found it a little cumbersome to use in practice.

 

 

 

 

A picture containing text, electronics

Description automatically generatedTap the Autonomous Field Detection icon to start the alignment procedure.

 

Once the scope identifies the viewed star field with its internal database (called plate solving) it knows where it is and you’re good to go.

 

It seems to be very accurate, which it needs to be to land the image dead center on a small CMOS sensor. The only caveat is that it needs to see a star field, not just a single bright star, so you have to wait a little longer for the sky to darken before you can do an alignment.

 

Tap the ‘Explore’ icon on the lower menu bar to call up the GOTO database. Here you will find most of the popular Messier, NGC and IC targets grouped into several categories. If the selected object’s ‘GOTO’ icon is greyed out, this means it is not viewable at your time/location.

 

First impressions.

 

The EVscope is not a fast slewer, and during a GOTO, it seems to pause a couple of times along the way to review its plate solving algorithms in some wayward part of the sky, but whatever it is doing, it’s doing it well as the GOTO’s were spot-on middle-of-field when done, and they stayed there for as long as you want.

 

A close-up of a cell phone

Description automatically generated with medium confidenceDuring slewing the ‘Live view’ will shows the stars as streaks until the scope settles down to tracking rates. Once on target, it stays in Live view mode unless you tap the EV mode icon. The Live view mode can be pretty grainy on dim objects. You can fiddle with manual controls for the live view mode to provide a less ‘boosted’ image. I don’t know if dimming the live view mode also dims the view for the EVscope’s Sony sensor.

 

 

 

 

 

So you’ll want to tap the EV icon and this is where the magic happens.

 

 

 

 

 

 

A celestial object in space

Description automatically generated with low confidenceThe EVscope then starts taking frames 4 sec apart, stacking and processing them to present a gradually improving image of dimmer astro targets. Brighter targets may only seconds to image, dimmer ones may run to several minutes depending on how dark your skies are.

 

In my fooling around the first time out, it only needed 20 sec to provide a nice pic of M42 and M82 – the Cigar Galaxy.

 

And I saw the Crab nebula for the first time ever….

 

And obviously, from this article, once you have the images on your phone or tablet, it’s easy to manipulate them.

 

The nice thing about all of this is that other than the preliminary setup, I was sitting comfortably in my den about 25 ft away while the scope was outside in freezing temperatures. I was able to move to the other end of the house which would have been about 40ft away at that point and still had a signal.

 

The scope seemed to be well focused and collimated when it arrived judging by the star images. Both the focus and collimation are manually adjusted with the app software providing the necessary feedback. There is an included Bahtinov focusing mask located under the front dust cap. Between the mask and the app-based cues for collimation, it is not difficult to do (easier than a standard Newtonian).

 

A couple of things seem to disorient the EVscope.

 

1.      If there are clouds or obstacles in the way of the FOV, then the scope cannot see a ‘plate’ to solve. It’s not like a regular GOTO where you tell the scope where it is on the face of the earth and what time it is and the controller then predicts the target location from there on. That GOTO system does not care about obstacles, it will cheerfully point at your target on the other side of a barn. By comparison, the EVscope navigates by comparing star fields to its internal maps. If any of the FOVs are blocked when it drops out of warp to have a recon, then the GOTO is aborted, and it returns to tracking mode.

2.      If excess vibration detected, the scope will drop out of EV mode. As mentioned, the rubber tripod feet or ‘squishy’ and there is excess play in the AZ axis that may be contributing to this issue…

 

Conclusions

 

So far, it is early days, but I am encouraged. The EVscope allows me to view the same old objects in a completely new light (no pun intended) and to save those views to my phone/tablet for use any way I want.

 

I am able to see things I could never see in my strictly visual scopes, or if visible, as my wife would say….meh...

 

So instead of doing a Messier marathon and saying ‘yeah, I think I saw it’, you can now have an image of each one for your Messier log. And like our hobby in general, the next night, the seeing or the next image could be better than the last.

 

The moon and planets can be viewed with the EVscope and indeed, they are GOTO objects in the Apps target list, but it is important to realize that this is not the EVscope’s intended purpose. The EVscope excels at aggregating light and detail from dim objects. The moon and brighter planets will require that you fiddle with the manual adjustments in live view mode. EV mode is not required. Just bear in mind that you are only dealing with 450mm of focal length so the planet views are going to be very small. However, for the moon and bright planets, any decent scope will do.

 

When it comes to looking for and viewing dim astro objects, there are basically two solutions:

 

a)      Big aperture, with all the attendant problems with portability. And at the end of the day, most faint fuzzies stay exactly like that – faint.. even in bigger scopes.

b)      Light stacking ie: Astrophotography. The EVscope is well along the way to astrophotography, albeit with limited resolution and light grasp compared to more professional setups. The meager 4.5” EVscope can show more of deep space objects than you could ever hope to see with direct vision. I’m sure there are some 24” newt owners that would dispute that statement, but please refer to my comment in point a).

 

So if you want to see more of deep sky objects than is possible with visual observing, and you’d like to be able to take pictures of these views, then this is perhaps a good fit for you.

 

I know that there are Astrophotographers out there that will sneer at this little scope, and there is no argument that for the money, you could get a much more capable telescope optically, and/or a better resolution AP setup - but you still have to carry it all out, hook it all up, learn how to use it, and accompany it with your computer while you’re taking the pics. And then you need to process the images through various software to tease out the details. I’ve done some basic webcam stuff and then processed it through a couple of stacking programs. I found it time consuming, tedious and not straightforward.

 

So the EVscope can get you into basic AP without the various components, wires, cables, computers, frostbite and steep learning curve.

 

I can take the scope outside, set it up and capture a decent image of M42 before the Pro AP guys have even finished carrying all their AP gear outside. And for now, I’m good with that.

 

EVscope Pro’s

 

·         Good introduction to basic astrophotography. It adds another dimension.

·         Accurate GOTOs and tracking

·         Fully integrated package so no wires, hookups or compatibility issues.

·         Works with any Android or Apple mobile phone or tablet with WiFi.

·         Capable of revealing very faint astro objects and saving the image files.

·         Good basic App interface. (would be better with a proper manual)

·         Very portable (OTA and tripod less than 20lbs)

·         No other accessories required.

·         Small learning curve.

 

EVscope cons

 

·         Expensive

·         Fully integrated package. If anything fails, you have a paperweight.

·         Limited capabilities compared to more sophisticated setups. Reports are that Unistellar is working on upgrades to make their scope more AP friendly for those that want to have more control. After all, it uses the same Sony IMX224 sensor as a couple of popular aftermarket AP cameras.

·         Sparse documentation for scope, and, in particular the Unistellar App. (to be fair though, they responded quickly to two questions I asked them)

·         Not really intended for the brighter solar system targets (although they can be imaged…)

·         Not good for terrestrial use.

 

 


  • kc6zut, Bob Campbell, dswtan and 22 others like this


168 Comments

Photo
Supernova74
Jul 10 2021 10:39 AM

i hope there will be more competition, maybe by some well known names in the industry.  It looks like the Chinese company that promised more aperture at a lower cost scammed its crowdfunders and I hope that experience doesn't put a bad taste in the mouths of future entrepreneursI

I would like to see a similer concept in a 8-10” dob which is just an exsample with a higher grade camera.6” apo would be nice however being cost effective to the end user may not be justified and then end up literally going into 5 figure sums!?

so instead of something being just ok or functional in the evscope from a smart imager scope.for individuals who just want a plug in and play kind of arrangement.having something bigger and better so to speak in a mirror type format might be the way to go.however we have to see.

    • fallenstarseven likes this

i hope there will be more competition, maybe by some well known names in the industry.  It looks like the Chinese company that promised more aperture at a lower cost scammed its crowdfunders and I hope that experience doesn't put a bad taste in the mouths of future entrepreneurs.

Maybe more likely it will just deter future investments in crowdfunded Chinese startups. 

https://www.space.co...sky-photography

 

 

Telescope maker Unistellar and Nikon have announced a new partnership to give a wider public of amateur astronomers a chance to use high-end equipment and enjoy the wonders of the night sky just like astronomy professionals.

Albeit very light on actual details what this partnership entails, I guess it's good news for its fans and promising for the future/next iterations on the techno/optical side of things?

According to an article on Nikon Rumors Nikon will be assisting in lens development.  The article mentions that Nikon actually built telescopes a century ago, something I didn't know.

    • Cali likes this

A lot of people here seem to be comparing the EVscope to AP setups and to visual.  Obviously the EVscope strikes a great compromise between ease of use and visual performance.  The visual performance of any EAA setup will always blow away your eyes looking through an eyepiece.  It's definitely not the same experience, but you do see a whole lot more.

 

I think a useful comparison should be made between the EVscope and an EAA setup based on the ZWO ASIAir.  This is a very small Raspberry Pi-based computer running a comprehensive, very user friendly astronomy suite that controls a ZWO camera, focuser, and the almost any mount, and does live stacking - essential for EAA.  By mounting the ASIAir on the scope, a fairly complete "system" can be semi-permanently mounted with only a power pack being required in addition.  The user interface is a phone/tablet which is user supplied and connected via wi-fi.  The total cost of a "system" with substantially higher performance than the EVscope could amount to less than $2000. 

 

I've used EAA "systems" based on a laptop running Sharpcap and now ASIAir and the difference in pure fun and simplicity is huge.  If one wanted to build up a dedicated EAA scope based on the ASIAir that could be dragged out fully assembled and operating in minutes, it could be done. It's just a matter of packaging.

    • Jon_Doh and fallenstarseven like this

A lot of people here seem to be comparing the EVscope to AP setups and to visual.  Obviously the EVscope strikes a great compromise between ease of use and visual performance.  The visual performance of any EAA setup will always blow away your eyes looking through an eyepiece.  It's definitely not the same experience, but you do see a whole lot more.

 

I think a useful comparison should be made between the EVscope and an EAA setup based on the ZWO ASIAir.  This is a very small Raspberry Pi-based computer running a comprehensive, very user friendly astronomy suite that controls a ZWO camera, focuser, and the almost any mount, and does live stacking - essential for EAA.  By mounting the ASIAir on the scope, a fairly complete "system" can be semi-permanently mounted with only a power pack being required in addition.  The user interface is a phone/tablet which is user supplied and connected via wi-fi.  The total cost of a "system" with substantially higher performance than the EVscope could amount to less than $2000. 

 

I've used EAA "systems" based on a laptop running Sharpcap and now ASIAir and the difference in pure fun and simplicity is huge.  If one wanted to build up a dedicated EAA scope based on the ASIAir that could be dragged out fully assembled and operating in minutes, it could be done. It's just a matter of packaging.

It's great that you've arrived at a great solution that quenches your thirst to research each granular aspect of the science, engineering, function, specifications, product availability, specific model selection, compatibility, connectivity, and all the trial and error that such an approach implies. 

 

Others here don't feel the need or desire to put that much effort into the front end and prefer to jump straight to what they consider to be the business end of AP – the raw data files (e.g., TIFF, FITS) – and get immersed in customizing the post-processing aspect of AP while they gladly pay someone else to do the front end work of building the rig with off-the-shelf components.

 

It's similar to loving to travel to, and photograph, different spectacular locations without having to first build the car/plane/boat/train/camera. 

    • jprideaux likes this

To draw a comparison to photography, there are point and shoot cameras that automate everything and draw criticism from photogs.  But, there have been many award winning photographs that have been taken with them.  There are DSLR's that let you have as much control over the photo as you desire.  Some folks spend a lot of money on a DSLR and shoot only Jpegs.  Others, like me prefer shooting Raw while still others will shoot both Raw and Jpeg if their camera allows for it.  The Unistellars and Stellinas may be like the point and shoot cameras, but they serve a purpose and get folks into EAA.  EAA is going to be the future of astronomy due to our increasing light polluted skies, imo.  I for one am happy to see such telescopes enter the market.  I'm also glad there are plenty of folks who can rig up an EAA system with their telescopes.  Competition and choice is good for our hobby.

    • Scout666 likes this

Why not just an electronic eyepiece which does the same ?

That can be popped into any scope and you are not limited to this aperture.

    • ziggeman likes this

Why not just an electronic eyepiece which does the same ?

That can be popped into any scope and you are not limited to this aperture.

That is a smart solution! And the 'eyepiece' would be connected to the mount with autoguiding, platesolving and the whole 's*ite'! :)

Why not just an electronic eyepiece which does the same ?

That can be popped into any scope and you are not limited to this aperture.

That's exactly what night vision EAA is all about! 

Don't you just love it when you come up with a "great idea" and then find out someone else beat you to it? I feel your pain brother - it's been happening to me all my life.

That's exactly what night vision EAA is all about! 

Don't you just love it when you come up with a "great idea" and then find out someone else beat you to it? I feel your pain brother - it's been happening to me all my life.

Doesn't the eVscope include an electronic eyepiece?

Doesn't the eVscope include an electronic eyepiece?

The original EvScope did, but the newer model the Equinox does not have one.

The original EvScope did, but the newer model the Equinox does not have one.

Well, honestly, an electronic eyepiece is a waste of resources if you can see it larger and more conveniently on your cell phone display. 

Photo
fallenstarseven
Jul 21 2021 09:12 PM

Well, honestly, an electronic eyepiece is a waste of resources if you can see it larger and more conveniently on your cell phone display. 

I looked at several original EVScopes at my local club's first star party of the hopefully post-pandemic era.  I was struck by how much more I enjoyed the view in the eyepiece on each EVScope over the iPad views--they seemed deeper and richer and I'm not sure why.  So much so that in a recent classified I placed to purchase a used EVScope to augment my 10"dob for nebulae and galaxies, I specified I only want the older model with the eyepiece.  I know there are several advances on the new model but I just enjoyed that eyepiece view, and I think family and friends will enjoy it for nebulae and galaxies.

    • Jon_Doh and rjones1138 like this

On YouTube there are several folks who have the EvScope commenting the view in the eyepiece was nicer than the one the tablet produced.

    • rjones1138 likes this

I've been using my goto 8" SCT for more than 20 years and a small TeleVue refractor for about as long. I have always wanted this hobby/lifestyle to be easier to get into. I am in the category of person who wants to setup a telescope and see stuff. Wonder of the universe kind of thing.

Secondly, I always wanted to see "more" so my family and friends would have a chance of being more engaged. They often are interested but are not impressed by the views through the eyepiece. 

 

Others have written and experienced similar. So when I saw the eVscope, it really triggered my interest. I got mine in October 2020 and got firstlight the very first night after I got it. In just a few minutes, I was seeing the Ring and Dumbbell in color, and I have written a lot about literally jumping up and down with excitement elsewwhere. (https://www.cloudyni...2#entry10688049)

There was a bit of a learning curve with the eVscope but very little. And now, when I show family and friends stuff at the eyepiece, they are much more engaged. Every single time.

As time has passed, the app and software that controls the scope has improved. My biggest gripe was the eyepiece was too high contrast and so while it had a great view (far better than anything I ever saw in my 8" SCT), it lacked subtle detail. The same view on an iPad was far more subtle. Low and behold, the latest update to the app has dramatically improved the eyepiece view and this made me very happy. I can now see lot of subtlety in the Lagoon, Trifid and many other objects that was not there before. 

 

I love sitting at the eyepiece, but am willing to admit I am fooling myself into thinking it is a true eyepiece experience. But that's me. I get more enjoyment at the eyepiece, maybe because of nostalgia.

So the scope is being improved constantly.

The other thing that I just discovered is that the ease of setup and use simply cannot be undervalued in this scope. Last night, for the first time, I took out my new astro rig (ASI Air Pro, ZWO camera, battery, goto mount) and tried to replicate the eVscope experience. 

Granted, I am very new to the DIY approach to astro, but it seemed to be extremely more complicated and frustrating with the ASI Air Pro. First, the wifi range is terrible, next, the software is very glitchy and would crash, and when it did work, it is so complex that it took me an hour to get the gain, exposure, etc, to see the moon. Then focus was difficult, and I still don't know if any images were saved.

It never successfully plate solved and took a minute plus to try.

I know that I am in the beginning learning curve and will get all this, especially with some help at an outing where someone is willing to help me, my point is this:

With the eVscope, none of this learning curve exists, the app is super simple and easy to use, and you get amazing results with no experience in minutes.

 

The downside is as others have said - you have little to no control over binning, FITS files, rotation, stacking, or exposure times. Fixed focal length. Not particularly suitable for high quality planet viewing.

But I now can attest to the extremely well done package that is the eVscope. For those who do not want to be the DIY person and fuss over brackets, batteries, mountings, etc, and just see stuff, there is nothing better than this scope out there. 

The other big argument I hear is the price. But the ease of use is worth every penny in my opinion.

As I went through conversations with many people, however, I have come to understand why some people don't get so excited about the eVscope - those people who were already up the curve of astro and have the perspective that they already have the capabilities of the eVscope, many times far better, and/or costing far less.

But my feeling is that this is a game changer in a huge way, outside that true astro group and in a few years, this category of product will be a crowded space, and these "point and view" scopes will be producing images rivalling the best astro work out there. I just don't think the scope threatens anyone or anything. Non goto scopes are still here, goto scopes are still here, diy astro rigs are still here. It's not an all or nothing proposition. 

 

So that's my take. At the end of the day, the eVscope has become my single most loved possession and recharged my star gazing in a huge way. And I have heard from many others that have the same experience.

    • Jon_Doh, alder1 and jprideaux like this
Well said, and very helpful to prospective eVscope buyers. I’m also feeling the limitations of my 8” SCT, and would love to share more exciting views with friends, family and neighbors. Not to mention myself!

I've been using my goto 8" SCT for more than 20 years and a small TeleVue refractor for about as long. I have always wanted this hobby/lifestyle to be easier to get into. I am in the category of person who wants to setup a telescope and see stuff. Wonder of the universe kind of thing....

What you've described is exactly the same way I see it too. It's like driving your car... 

 

Sometimes you just want to take the slow, scenic route and enjoy every step of the way. And so I break out the EQ6-R with my humble 5" mak, take my time to manually do my polar alignment and get the exact hour angle and position on the proper annular precessional ring in the polar scope reticle, and then use my illuminated eyepiece to perfectly center each star during my 2-star alignment and do live observations of planets and smaller, brighter DSOs. No plate solving. No autoguiding. No electronics other than mount motors and reticle LEDs. Just an old school, manual transmission drive through the cosmos!

 

But other times you just want to take the interstate highway so you can pop straight to your destination, which is when I break out my Stellina (instead of eVscope because I also wanted access to the FITS). 

 

Both genres are inclusive of each other, not exclusive. And as the price of this new gen AP gear plummets over the next few years, I have no doubt that many AP traditionalists will also include a 'smart' scope as part of their effort to broader their astro repertoire. 

    • jprideaux likes this


Cloudy Nights LLC
Cloudy Nights Sponsor: Astronomics