Jump to content

  •  

* * * * *

A review of the Unistellar EVscope


Discuss this article in our forums

A review of the Unistellar EVscope

 

Well here is another product that has received a lot of hype and press, but without divulging much useful information about the telescope itself. Well needless to say, the hype worked on me….and I took delivery of my (used) Unistellar EVscope today.

 

Why did I buy, and why should you?

 

I’ve been in the hobby since I was 13 years old. Over the years I’ve had everything from homebuilt 6F8 newts, to 11” SCTs to Questars and Televues, and you know what? - M13 and all the rest look exactly the same today as they did 40 years ago - so something had to change. I thought about getting into astrophotography as a way of perhaps looking at this differently, but there is a considerable investment in equipment, a steep learning curve, and generally you need to be attendant at your telescope when imaging.

 

So the EVscope checked several boxes for me.

·         GOTO – check

·         Self-aligning – check

·         Portable – check

·         Astrophotography for idiots – check (albeit on a limited basis)

·         Ability for scope to operate remotely (ie: me indoors) - check

 

So what follows is a brief description, first impressions and first-light performance.

 

What is it?

 

A close up of a logo

Description automatically generated with medium confidenceThe EVscope is essentially a Newtonian based camera in as much as the parabolic 4.5” F4 primary mirror focuses its image directly onto a Sony IMX224 sensor located in the position that would normally be occupied by the diagonal in a Newtonian or secondary in a Cassegrain.

 

The Sony IMX224 is a color sensor with a resolution of 1.2 Million pixels (1305 x 977).

 

 

 

The OTA is carried on a single fork arm ALT-AZ Goto mount with an integral lithium ion battery supposedly good for up to 10 hours. Also packed in there is a lot of computing power as evidenced by the scope’s ability to;

 

1.      Recognize any star field you point it at and derive its internal map from that. (Plate solving)

2.      Offer full GOTO and tracking capability.

3.      View in both live view (no enhancement) or enhanced vision (EV) which takes frames every 4 seconds and stacks them internally in real time to provide an enhanced vision rendering of the target.

4.      Cancel out field rotation that you get with any non-equatorial mounted telescope.

5.      Sets up its own wireless network so it can access your phone or tablet to:

a.      Get current GPS coordinates and time

b.      Send real time pictures to your device (and 8 others)

c.       Your phone or tablet runs the Unistellar app which is a free download from Google Play or the Apple store.

 

 

The eyepiece is not really an eyepiece in the sense that we’re all familiar with, but a ‘window’ looking at a Hi-res OLED display. You see on this display (and on your phone or tablet) whatever the main Sony chip sees. The sensor image is roughly the equivalent of 50X optical magnification. There is no facility to be able to change magnifications, although can zoom digitally on your device.

 

However, it is the EV mode that makes this scope different. While it is true that astrophotography has been around for decades, and no one thing that the EVscope does is groundbreaking – the EVscope accomplishes this without all the gear, wires, setup and steep learning curve necessary to get results with a more traditional setup.

 

It is this ability to capture and stack 15 images per minute with the commensurate increase in brightness and detail of the target that allows the EVscope to make some of its extravagant claims. I have an 8” SCT (which mathematically has 3X the light gathering power) and I can tell you that, with the possible exception of M42, the lowly 4.5” mirror on the EVscope reveals a lot more detail, brightness and color of the Messier and NGC objects when in EV mode – the magic of light stacking vs. raw aperture.

 

Open box

 

The EVscope arrived packed in the usual double cardboard box. Well protected. Once you get the outer wrapper off, you will be met with the following promise.

A picture containing indoor

Description automatically generatedText, letter

Description automatically generated

Opening the inner box reveals the following

a)                   EVscope in parked position

b)      Tripod

c)                   Accessory box for the AC adapter

d)      Quick start manual and user manual

 

 

 

 

 

First impressions.

 

The scope and tripod together weigh approx. 20lbs. I wondered what the EVscope would be made of. The answer is aluminum for the OTA tube and plastic cladding for the lower end cell and mount cladding. The fork arm/base /rear cell have aluminum skeletons but in truth is, I was a bit disappointed.

 

With this scope commanding almost $3000USD, you’d like to think you could get away from the ETX black plastic syndrome, but the scope does have some heft to it, hinting perhaps at a substantial aluminum frame beneath the cladding.

 

The tripod is basically a heavy-duty camera tripod and the feet are tipped with squishy rubber pads which seem to allow a lot of ‘wiggle’.

 

Several times I would get the message that the ‘EV mode was dropped due to vibration’. It was a breezy night. I wonder if the squishy feet were allowing too much movement?

 

The tripod design allows the angle of the legs to be altered from a narrow footprint to almost horizontal in 3 steps. There are 3 ledges that the leg stop can butt against. Just pull out the detent to allow the stop to clear the lower ledge and butt against the next. It is not spring loaded so be sure to re-seat it.

 

The interface between the mount base and tripod head could also be more rigid. There are only 2 hold-down screws around the periphery, and this allows some movement between the scope and the tripod head. 3 screws would eliminate this issue, and indeed, there is a raised boss in the casting identical to the other two locations that has not been drilled/tapped. This would be an easily fixed oversight.

 

There is also some unwanted lateral play in the AZ axis. This could be contributing to the vibration warnings I sometimes get.  I am currently working with Unistellar to address this issue and will advise the outcome.

 

A picture containing weapon

Description automatically generatedLooking down the tube you will see the primary mirror at the bottom, and the ‘secondary cage’ forming the cross at the top of the tube where the Sony sensor is mounted.

 

Interestingly, the tube is double walled.. Whether this is to help with thermal stability, or to hide the wiring going up to the sensor – who knows? The inside of the OTA is painted a satin black which does a poor job of reducing stray light. A flat black paint, or even better, a textured flat black would help the cause.

 

 

The overall length of the OTA is a bit longer than a 4.5”F4 system would normally dictate. This is because the secondary light reflections that occur in a Newtonian or Cassegrain design that eat up some focal length are missing in the EVscope. It’s straight from the mirror to the sensor with nothing in between, so the OTA is as long as the mirror focal length plus whatever is needed at either end to house the optics and sensor.

 

 

A picture containing text

Description automatically generatedUnderneath the mount arm, there are two ports. The small one (USB-C) is the charging port. The large one (USB-A) can be used for powering a phone or other USB device from the scope’s internal battery.

 

 

 

 

 

 

 

Setting up.

 

The Unistellar documentation is not, well….stellar. It’s bare bones and basically covers taking the scope out of the box and setting it up and how to start the app. Then you’re pretty well on your own.

 

Spread the tripod and level with the integral bubble level. Plunk the mount/scope into the socket and secure with the two thumbscrews, take off the dust caps and the physical stuff is done. Maybe a minute - tops.

 

Press the power button about 2 seconds and it will initially turn Purple, and then to Red as it finishes its boot sequence and establishes its Wi-Fi network. At this point you can acquire the EVscope network on your phone or tablet, and then start the Unistellar app on that same device.

 

A picture containing text, electronics

Description automatically generatedUse the app joystick to depress the scope to point at any open area of sky with visible stars.

 

A note on the joystick. The center yellow circle is the ‘tip’ of the joystick. Drag it onto any of the four direction arrows to move the scope. The further from the center you drag it, the faster the EVscope moves. Fine adjustments can be made by tapping just the arrows. I found it a little cumbersome to use in practice.

 

 

 

 

A picture containing text, electronics

Description automatically generatedTap the Autonomous Field Detection icon to start the alignment procedure.

 

Once the scope identifies the viewed star field with its internal database (called plate solving) it knows where it is and you’re good to go.

 

It seems to be very accurate, which it needs to be to land the image dead center on a small CMOS sensor. The only caveat is that it needs to see a star field, not just a single bright star, so you have to wait a little longer for the sky to darken before you can do an alignment.

 

Tap the ‘Explore’ icon on the lower menu bar to call up the GOTO database. Here you will find most of the popular Messier, NGC and IC targets grouped into several categories. If the selected object’s ‘GOTO’ icon is greyed out, this means it is not viewable at your time/location.

 

First impressions.

 

The EVscope is not a fast slewer, and during a GOTO, it seems to pause a couple of times along the way to review its plate solving algorithms in some wayward part of the sky, but whatever it is doing, it’s doing it well as the GOTO’s were spot-on middle-of-field when done, and they stayed there for as long as you want.

 

A close-up of a cell phone

Description automatically generated with medium confidenceDuring slewing the ‘Live view’ will shows the stars as streaks until the scope settles down to tracking rates. Once on target, it stays in Live view mode unless you tap the EV mode icon. The Live view mode can be pretty grainy on dim objects. You can fiddle with manual controls for the live view mode to provide a less ‘boosted’ image. I don’t know if dimming the live view mode also dims the view for the EVscope’s Sony sensor.

 

 

 

 

 

So you’ll want to tap the EV icon and this is where the magic happens.

 

 

 

 

 

 

A celestial object in space

Description automatically generated with low confidenceThe EVscope then starts taking frames 4 sec apart, stacking and processing them to present a gradually improving image of dimmer astro targets. Brighter targets may only seconds to image, dimmer ones may run to several minutes depending on how dark your skies are.

 

In my fooling around the first time out, it only needed 20 sec to provide a nice pic of M42 and M82 – the Cigar Galaxy.

 

And I saw the Crab nebula for the first time ever….

 

And obviously, from this article, once you have the images on your phone or tablet, it’s easy to manipulate them.

 

The nice thing about all of this is that other than the preliminary setup, I was sitting comfortably in my den about 25 ft away while the scope was outside in freezing temperatures. I was able to move to the other end of the house which would have been about 40ft away at that point and still had a signal.

 

The scope seemed to be well focused and collimated when it arrived judging by the star images. Both the focus and collimation are manually adjusted with the app software providing the necessary feedback. There is an included Bahtinov focusing mask located under the front dust cap. Between the mask and the app-based cues for collimation, it is not difficult to do (easier than a standard Newtonian).

 

A couple of things seem to disorient the EVscope.

 

1.      If there are clouds or obstacles in the way of the FOV, then the scope cannot see a ‘plate’ to solve. It’s not like a regular GOTO where you tell the scope where it is on the face of the earth and what time it is and the controller then predicts the target location from there on. That GOTO system does not care about obstacles, it will cheerfully point at your target on the other side of a barn. By comparison, the EVscope navigates by comparing star fields to its internal maps. If any of the FOVs are blocked when it drops out of warp to have a recon, then the GOTO is aborted, and it returns to tracking mode.

2.      If excess vibration detected, the scope will drop out of EV mode. As mentioned, the rubber tripod feet or ‘squishy’ and there is excess play in the AZ axis that may be contributing to this issue…

 

Conclusions

 

So far, it is early days, but I am encouraged. The EVscope allows me to view the same old objects in a completely new light (no pun intended) and to save those views to my phone/tablet for use any way I want.

 

I am able to see things I could never see in my strictly visual scopes, or if visible, as my wife would say….meh...

 

So instead of doing a Messier marathon and saying ‘yeah, I think I saw it’, you can now have an image of each one for your Messier log. And like our hobby in general, the next night, the seeing or the next image could be better than the last.

 

The moon and planets can be viewed with the EVscope and indeed, they are GOTO objects in the Apps target list, but it is important to realize that this is not the EVscope’s intended purpose. The EVscope excels at aggregating light and detail from dim objects. The moon and brighter planets will require that you fiddle with the manual adjustments in live view mode. EV mode is not required. Just bear in mind that you are only dealing with 450mm of focal length so the planet views are going to be very small. However, for the moon and bright planets, any decent scope will do.

 

When it comes to looking for and viewing dim astro objects, there are basically two solutions:

 

a)      Big aperture, with all the attendant problems with portability. And at the end of the day, most faint fuzzies stay exactly like that – faint.. even in bigger scopes.

b)      Light stacking ie: Astrophotography. The EVscope is well along the way to astrophotography, albeit with limited resolution and light grasp compared to more professional setups. The meager 4.5” EVscope can show more of deep space objects than you could ever hope to see with direct vision. I’m sure there are some 24” newt owners that would dispute that statement, but please refer to my comment in point a).

 

So if you want to see more of deep sky objects than is possible with visual observing, and you’d like to be able to take pictures of these views, then this is perhaps a good fit for you.

 

I know that there are Astrophotographers out there that will sneer at this little scope, and there is no argument that for the money, you could get a much more capable telescope optically, and/or a better resolution AP setup - but you still have to carry it all out, hook it all up, learn how to use it, and accompany it with your computer while you’re taking the pics. And then you need to process the images through various software to tease out the details. I’ve done some basic webcam stuff and then processed it through a couple of stacking programs. I found it time consuming, tedious and not straightforward.

 

So the EVscope can get you into basic AP without the various components, wires, cables, computers, frostbite and steep learning curve.

 

I can take the scope outside, set it up and capture a decent image of M42 before the Pro AP guys have even finished carrying all their AP gear outside. And for now, I’m good with that.

 

EVscope Pro’s

 

·         Good introduction to basic astrophotography. It adds another dimension.

·         Accurate GOTOs and tracking

·         Fully integrated package so no wires, hookups or compatibility issues.

·         Works with any Android or Apple mobile phone or tablet with WiFi.

·         Capable of revealing very faint astro objects and saving the image files.

·         Good basic App interface. (would be better with a proper manual)

·         Very portable (OTA and tripod less than 20lbs)

·         No other accessories required.

·         Small learning curve.

 

EVscope cons

 

·         Expensive

·         Fully integrated package. If anything fails, you have a paperweight.

·         Limited capabilities compared to more sophisticated setups. Reports are that Unistellar is working on upgrades to make their scope more AP friendly for those that want to have more control. After all, it uses the same Sony IMX224 sensor as a couple of popular aftermarket AP cameras.

·         Sparse documentation for scope, and, in particular the Unistellar App. (to be fair though, they responded quickly to two questions I asked them)

·         Not really intended for the brighter solar system targets (although they can be imaged…)

·         Not good for terrestrial use.

 

 


  • kc6zut, Bob Campbell, chazcheese and 39 others like this


421 Comments

GSBass, I had a heavy vinyl 3x3 ft sheet hung from a branch to block that streetlight, but Ian blew it away.

 

Has anyone seen the same objects imaged by both eVscope 2 and eQuinox that has an opinion about the comparative image quality?  I was thinking about upgrading, but don't care about the eyepiece, and if there is no noticeable difference, I will just wait to see what the next model might offer.

 

Hal

Judging by the images posted on the Facebook page, there’s no discernible difference between the eQ and the eV2. Those users who have both scopes seem to feel that image quality is about the same.
It’s possible that Unistellar is working on a real upgrade, I’m waiting to see what that might look like.

Well if they are smart they will have dithering coming, until then they are behind the 8 ball

Judging by the images posted on the Facebook page, there’s no discernible difference between the eQ and the eV2. Those users who have both scopes seem to feel that image quality is about the same.
It’s possible that Unistellar is working on a real upgrade, I’m waiting to see what that might look like.

Unistellar announced the eQuinox 2 today, with the 347 sensor; pre-order price $2499 including carrying bag.  Near as I can see, the same as the eVscope 2 except for the eyepiece left off. Same field of view.  YES!!!

 

Site doesn't have details: go to DigitalCameraWorld.

 

Hal

I read the release, it said they were doing lucky imaging on planets… I would be curious of that implementation, to be successful I would think they would have to have some rudimentary wavlet algorithm and capturing at least a minute of data before displaying results, seems unlikely they have done that… for anyone who has processed planetary , that’s a pretty heavy lift in both processing power and memory. Also surprised evscope did not listen to their customers regarding colmination, obvious they need at least a cheap eyepiece from people’s experience with the last one. I was a little put off by the way they described removing light pollution , might be fine, it just sounded artificial, makes you worry about signal being removed beyond your control. No mention of dithering, I’m sure that gave Vaonis a sigh of relief…. I have a feeling CovalENS will become a major part of their marketing this year. However if equinox can pull off planets then that’s a good talking point to have…. I feel almost certain Vespera does not currently have the memory or processing power to implement planets, not to mention the image scale being too tiny to matter much. The moon however could look much better with lucky imaging and wavelets with both scopes, even stacking 5 would probably be an improvement over what both scopes currently serve, I have done that manually with vespera by taking 10, throwing out 5 and doing a simple merge stack in affinity, I think the raspberry could handle that, I suppose if that’s all evscope is doing to planets then I guess all you could say is it would be a very slight improvement but still a yawn

Unistellar announced the eQuinox 2 today, with the 347 sensor; pre-order price $2499 including carrying bag.  Near as I can see, the same as the eVscope 2 except for the eyepiece left off. Same field of view.  YES!!!

 

Site doesn't have details: go to DigitalCameraWorld.

 

Hal

 

    • bobparkersd likes this

Since Unistellar previously released the eQuinox as a lower-cost (no eyepiece) version of the evScope1, it makes since that they would also release a eQuinox2 as a lower-cost (no eyepiece) version of the evScope2.  

I always thought the eyepiece was a bit strange on these scopes since you don't want to touch the thing while it is stacking.  Therefore, I find the eQuinox versions more attractive. 

If they can do anything to help with planets that will be a plus.  Although it will still have the same aperture and focal-length limitations since those are fixed.  

Unistellar has already done a software upgrade that lets us image planets much better than we could before, so I assume that’s what they’re talking about with the eQ2. The results can be very nice, judging by what I’ve seen. I haven’t had really good pictures yet because the seeing has been generally poor, and (I believe) you still need good seeing.

I tried to look up samples but don’t have fb, do you know what they are doing?, the article just said lucky imaging but does not really tell me much…. I am happy they are trying though, I suppose it does not have to be level of processing I do for planetary to improve the images but had assumed the computers in these scopes would not be capable to do much….. I guess it’s also an expectations thing, I guess many would call it a win if you could make out two cloud belts on Jupiter or had clearly defined ring on Saturn… I don’t give vespera a passing grade here, they have not tried to improve that function….. but then again I was not expecting them to, it is 50mm after all…. But they could be better than a blurry dot I suppose

Unistellar has already done a software upgrade that lets us image planets much better than we could before, so I assume that’s what they’re talking about with the eQ2. The results can be very nice, judging by what I’ve seen. I haven’t had really good pictures yet because the seeing has been generally poor, and (I believe) you still need good seeing.

I love competition btw… it’s my hope success at evscope  will drive Vaonis to do better, just like I hope CovalENS will light a fire at evoscope to implement dithering…. And both companies should pay attention to el cheapo, dwarf 2, those kids have innovated and made it possible for people with more modest means to experience robotics

    • Bob Campbell likes this

But apparently colmination is a nightmare on that scope without an eyepiece…. They need to solve that

Since Unistellar previously released the eQuinox as a lower-cost (no eyepiece) version of the evScope1, it makes since that they would also release a eQuinox2 as a lower-cost (no eyepiece) version of the evScope2.  

I always thought the eyepiece was a bit strange on these scopes since you don't want to touch the thing while it is stacking.  Therefore, I find the eQuinox versions more attractive. 

If they can do anything to help with planets that will be a plus.  Although it will still have the same aperture and focal-length limitations since those are fixed.  

But apparently colmination is a nightmare on that scope without an eyepiece…. They need to solve that

I forgot about the collimation needs of anything with mirrors.  I'm spoiled with mainly using refractors.  I did recently pick up a dob and the first accessory I needed was a lazer collimator.  I am curious of the best way to collimate the Unistellar products (with or without the electronic eyepiece).  Perhaps you need to take unfocused pictures and then look at them (either through electronic eyepiece or connected device).

    • GSBass likes this

Okay, here’s Jupiter with the new software, quite a bit better then the original version. 
BTW, I have an eQ, no eyepiece, and collimation is pretty easy. The scope seems to hold collimation well, although I mostly just carry it in and out of the house. If you’re interested, there’s a link to the YouTube video on collimation on the Unistellar website. 


Attached Thumbnails

  • Attached Image: 851E32DF-F5D2-4FD7-A673-0F288B50E025.jpeg
    • jprideaux and GSBass like this

Thanks for sharing, I think that’s at least close to what I expected, perhaps a little better, it appears they have not implemented any wavelets, I think that would be the next step as they work out best way…. The issues I have read about colmination are not well understood without hands on but it may have to do with how far out it gets and ability. To get it back without eyepiece…. Just surprised me they didn’t address that with latest update

I forgot about the collimation needs of anything with mirrors.  I'm spoiled with mainly using refractors.  I did recently pick up a dob and the first accessory I needed was a lazer collimator.  I am curious of the best way to collimate the Unistellar products (with or without the electronic eyepiece).  Perhaps you need to take unfocused pictures and then look at them (either through electronic eyepiece or connected device).

 

Okay, here’s Jupiter with the new software, quite a bit better then the original version. 
BTW, I have an eQ, no eyepiece, and collimation is pretty easy. The scope seems to hold collimation well, although I mostly just carry it in and out of the house. If you’re interested, there’s a link to the YouTube video on collimation on the Unistellar website. 

I purchased a Unistellar EV2 recently, it arrives this Saturday 1/7/23. I've lugged around everything from 90mm MAKS to 16" GoTos. Now at 72, some arthritis, I'm not much into lugging all the equipment into the  mountains. Thus with most of my scopes being on the large/heavy side I wanted something that will last me on into my years. Also, many in our astro club are attempting imaging. I started viewing in 1963 with an Edmunds 3" reflector. No computers, no stacking, nothing. I grew up knowing Tony Hallas and Daphne very will and their long hours of self-guided exposures. As I was feeling myself pulled into the imaging group I saw what they do under very dark skies or even in their backyards. They are not looking through an eyepiece, they are spending all the time in a Bortle 2 sky staring at a laptop screen, fiddling with sliders and buttons between their ACI and PHD2 software and the image. To me this is not observing. Thus the EV2 will give me a great way to image and even view the image electronically as it stacks...and I have plenty of room in my SUV for an optical scope so the best of both worlds. No laptop...that really bugs me. Now, two questions come to mind. I understand the EV2 accepts filters like the Lumicon UHC in 1 1/4" format. To do that though I've heard that I need an adapter tube. Does anyone know of such a tube that threads over the sensor and allows filters to be screwed in? Also there has been talk of a dew shield for this scope. Is that needed or just talk? 

 

I have a little SkyWatcher Adventure 2i and it's a set it and forget it imaging platform, so easy to use and so portable but it's limited to 400mm so will limit me to wide views of the Milky Way.

 

Any information would be most helpful. Thanks!!

    • Bob Campbell likes this

Here’s the Unistellar video on installing a filter:

https://youtu.be/DyCFjn1MDDQ

I use an L-pro with great success. On the Facebook page there are a number of reports on various filters, with side by side images of DSO’s with and without. 
I put together a dew shield for my eQ, not for dew as it’s unnecessary, but to block moonlight when it’s close to full. It seems to help. 
Good luck with your eV2, once you learn it’s ways it’s quite an amazing little scope. I find the Facebook group to be really helpful. I joined Facebook specifically to be a part of the international eV/eQ group. 

    • Sixptelk and GSBass like this

That’s very cool that you can do that… I guess maybe after doing it enough you would feel comfortable doing it in the dark, just ensure the scope is horizontal for when you drop it in the tube, I think most vespera owners are on fb too but can’t bring myself to ever go back there… maybe if Elon buys it too one day :)

Here’s the Unistellar video on installing a filter:

https://youtu.be/DyCFjn1MDDQ

I use an L-pro with great success. On the Facebook page there are a number of reports on various filters, with side by side images of DSO’s with and without. 
I put together a dew shield for my eQ, not for dew as it’s unnecessary, but to block moonlight when it’s close to full. It seems to help. 
Good luck with your eV2, once you learn it’s ways it’s quite an amazing little scope. I find the Facebook group to be really helpful. I joined Facebook specifically to be a part of the international eV/eQ group. 

    • Sixptelk likes this

Thank You GS. I've ordered one, have all the filters so a great way to obtain better views and images. Thanks again, Bob

    • GSBass likes this

Not to sound too conspiratorial, but how do we know the images produced aren’t just pre-loaded into the telescope? (Just kidding, but think about it for a second.)

Not to sound too conspiratorial, but how do we know the images produced aren’t just pre-loaded into the telescope? (Just kidding, but think about it for a second.)

There is always the "putting your hat over the objective trick" to test things out!

 

There are lots of easy ways to mess-up imaging to prove to yourself it does not use stock images.

There is always the "putting your hat over the objective trick" to test things out!

 

There are lots of easy ways to mess-up imaging to prove to yourself it does not use stock images.

Agreed. Imho, the easiest test is to just swipe a flashlight across the FOV while acquiring and you can see it in the fits file.

 

I asked that same question before I bought my Stellina. But since then, I've captured plenty of high altitude vapor drifts and Starlink artifacts in my raw data. And the scope will halt acquisition if a cloud approaches and it can't verify its tracking.  Someone in my local astronomy group just posted his capture of a couple of comets. 

 

So such quality and versatility is definitely possible with these smaller robotic scopes. 

Waiting fast as I can for an eQ 2.



Cloudy Nights LLC
Cloudy Nights Sponsor: Astronomics